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ABSTRACT

An adaptive filter which uses a minimum variance criteria to

estimate state noise covariance is developed. It is not necessary

to assume white state noise in order to implement the filter. Sim­

ulation results ar~ given which demonstrate that the filter tracks a

satellite in the presence of modeling errors better than a conven­

tional minimum variance filter with state noise. It is also shown

that the propagated covariance matrix of the filter is an accurate

indicator of the filter's performance.
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ADAPTIVE FILTERING WITH CORRELATED STATE NOISE

INTRODUCTION

The tendency of recursive minimum variance filters to diverge, that is, to

show a secular growth of residuals, has received much attention (1-5). The

difficulty appears to be rooted in the assumption that the dynamics governing

state evolution are precisely known and are properly modeled in the filter. Under

such an assumption the state estimate of the filter must ultimately become ef­

fectively independent of incoming data. At that point the filter becomes a prop­

agator of a state by means of a dynamic state equation. This causes no difficul­

ties if the state equation be accurate since presumably this point is reached only

after the filter has well identified the state. But if, as is usually the case in ap­

plications, the state equation is not entirely accurate the tendency of the filter

to become independent of incoming data must lead to a growing difference between

the actual state and the estimated state. The divergence between true and es­

timated state will manifest itself in the before mentioned growth of residuals.

One way of taking into proper account inaccuracies in the state equation is

to add a random component to the equation thus making the state equation stochas­

tic in nature. The variance of the random component is a measure of the quality

of the dynamic modeling at any given time. With such a change the recursive

minimum variance filter never loses its responsiveness to incoming data and

hence the tendency to diverge is greatly mitigated or eliminated.
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The random component of the state equation is commonly called "state noise"

and choosing a-priori the proper variance for the state noise can be a problem.

If the state noise variance is too large the filter will be too responsive to data

noise and will not perform as well as it would if state noise were properly chosen.

Conversely, if the state noise variance is fixed at too small a value, filter di­

vergence may again occur. It is not always an easy matter to determine a-priori

the quality of one's dynamic modeling and of course the modeling quality may

vary considerably during the course of the filter's performance.

An interesting approach to this problem introduced by A. Jazwinski (6, 7)

is to permit the filter a feedback mechanism by which it can continuously monitor

its performance, increasing the variance of state noise when residuals indicate

that dynamic modeling is poor and reducing the variance when residuals indicate

the converse. This technique is called "adaptive filtering." Jazwinski's ap­

proach amounts to choosing the variance of the state noise at any given step ac­

cording to a maximum likelihood criteria based on the sum of a given number of

previous residuals. The technique has been demonstrated to be effective in

satellite orbit estimation (8). However, there are some obj ections which can

be raised. First, Jazwinski presents his filter algorithm in a form which as­

sumes that the observations are scalars. While it is true that technically this

presents no loss of generality it is not always convenient to present observations

to a filter in scalar form. Second, the filter is not completely recursive since

residuals from several steps back must be stored in the computer. If

2



observations are not scalars this can in some cases cause storage and time

problems. This factor is also important with regard to possible applications

of adaptive filters to on-board, real time estimation. Third, the variance of

the state noise in the maximum likelihood approach is conditioned equally by a

certain number of previous residuals and has no direct dependence on residuals

obtained previous to a certain time. Intuitively one expects that the estimate of

state noise variance would be a gradually attenuating function of previous resid­

uals. Such an attenuation could always be enforced on a more or less ad hoc

basis but one would prefer that this attenuation occur as a logical result of one's

theoretical model. The fourth objective is more subtle than the previous three.

Methodologically it is sound to model errors in the dynamics of one's system as

a random component of the state equation. What cannot be modeled determin­

istically can and should be modeled stochastically. What is questionable, how­

ever, is Jazwinski's assumption that the state noise is a white random sequence.

If dynamic modeling errors have long periods relative to the data sampling rate

their net effect will not manifest itself as a realization of a white random se­

quence. In fact, in most applications it is much more reasonable to model dy­

namic system errors as a highly colored random sequence. The assumption of

white state noise is not necessary for the implementation of Jazwinski's maximum

likelihood approach but unless it is imposed a numerically intractible algorithm

results.
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In this paper the author has taken Jazwinski's valuable idea of adaptive fil­

tering and has cast it into a different mathematical setting in which state noise

variance is estimated according to a minimum variance rather than a maximum

likelihood criteria. It will be seen that this new approach adequately meets every

one of the objections raised against the maximum likelihood approach.

There is an aspect to adaptive filtering which has not received attention. A

common criticism against minimum variance filters either in the recursive or

in the batch mode is that the related covariance matrix which the filter generates

tends to give an optimistic assessment of the filter's performance as measured

by residuals. An adaptive filter either from a minimum variance or a maximum

likelihood criteria forces a statistical compatibility between residuals and state

noise variance and thus indirectly a compatibility is forced between the actual

filter errors and the propagated covariance matrix of the filter. A general proof

of this claim is a difficult matter since adaptive filters are non linear. Never­

theless, in every one of the numerous simulations the author has performed with

his version of the adaptive filter, the actual errors of the filter were statistically

compatible with the R. M. S. errors propagated by the filter.

As a final comment before the mathematics of the minimum variance adapt­

ive filter is given it should be mentioned that under no circumstances should

adaptive filtering be thought of as an adequate substitute for good modeling. Of

course, the best of all possible solutions to the problem of filter divergence is

4



improved modeling. This improvement can take the form of a more astute rep-

resentation of the forces acting on the system or the improvement can be obtained

by increasing the size of the estimated state to include a representation of un-

modeled forces as Jazwinski has done recently (9). There is a limit, however,

to how well one can deterministically model the dynamics of a system. What

must be left out can only be accounted for in a stochastic fashion. In what fol-

lows it should be assumed that the analysis begins only when all efforts to im-

prove modeling have ended.

A MINIMUM VARIANCE FILTER WITH COLORED STATE NOISE

Assume that the dynamic equation for a time evolving state is

(1)

'"where ~ is a K dimensional state, An is a K by K state transition matrix, Tn is

an m dimensional random variable and, of course, Rn is of dimension K by m.

The statistical properties of Tn are

(2)

and

(3)

where

'"
Assume also that there exists an L dimensional observation state Yn related to

(4)

5



Let Yn be a direct measurement of Yn. Thus

Yn = Yn + vn ' E (vn ) = 0, E (vn v~) = Qn' E (vi vJ) = 0, i * j

{Vn } and {Tn} are uncorrelated and all random variables are assumed normally

distributed.

1\
Finally one assumes the existence of an unbiased estimator Xn _1 of Xn - 1

with properties

1\ ~

~-l = ~-l + an_I' E (an_I) = 0, E (an._ 1 a~_l) = Pn- 1 (5)

And since presumably a n_1 is conditioned by Tn-l a correlation between Tn

and an _
1

must be expected. Thus

(6)

A recursion relation for Xn will be obtained later.

Under the assumption that the covariance matrix of Tn is known the linear,

unbiased, minimum variance filter is known to be

(7)

(where in equation 7 and her~after we drop the logically correct but inconvenient

distinction between random variables and their realizations) with

(8)

where

(9)
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To complete the representation of the minimum variance filter it is necessary

/\
to define recursively Xn as a function of Xn- 1 • Assuming that ~-l can be written

as

(10)

an _1 can be represented as

Equation 11 in conjunction with equation 3 permits us to write

- (A H B A )T + (H BAR )TXn - 'Yn Xn-l n-l - n-l n-l n-l 'Yn Pn-l n-l n-l n-l - n-l (12)

Equations 7, 8, 9 and 12 define a linear, unbiased, minimum variance filter

under the assumption that the covariance matrix of the state noise is known.

ADAPTIVE ESTIMATION OF STATE NOISE COVARIANCE

The state noise covariance is in a sense a measure of dynamic modeling ac-

curacy, and to assume that this matrix is known at every step of the filter'S op-

eration is to assume that one knows the quality of his modeling at all times.

Often this is not a valid assumption and it is suggested that a. feedback mechanism

be provided to choose a state noise covariance based on the filter's past per-

formance as measured by residuals. It is the function of this section to establish

this mechanism.

First it is convenient to introduce some non-standard matrix operations.

Let A be any square matrix of dimension N by N. By the symbol D (A) we shall

refer to the N by 1 vector consisting of the diagonal elements of A. Conversely,
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let C be an N by 1 vector. Then n-1 (C) will represent the N by N matrix whose

diagonal elements are the elements of C and whose off diagonal elements are

zero. Finally, let A be any N by M matrix. The symbol A2 will represent an N

by M matrix whose elements are the squares of corresponding elements of A.

Attention is focused on equation 3. If each element of Tn can be considered

as an independent unmodeled force it is reasonable to expect that Pn be a diagonal

matrix. This suggests that we assume 'Yn and <Pn to be diagonal matrices.

Letting

One can immediately derive the result

(13)

Equation 13 resembles a state transition equation with Zn the time evolving state.

The resemblance to equation 1 can be strengthened if one recognizes that in ap-

plications, equation 13 is only an approximate representation of the time evolu-

tion of the state noise covariance and that a random component should be added.

We will use as a state equation for Zn

Zn = 'Y 'YT Zn_l + on + 1Tn , E (1Tn ) = 0, E (1Tn 1T~) = en (14)

If an observation equation could be obtained to accompany equation 14, it would

be possible to estimate Zn in a fashion analogous to how the state ~ is estimated.

8



The observation state should be related to the residuals of the filter. The re-

sidual at the nth step is

and

Let

and

1\

Y~ = Yn - Bn An ~-l = vn - Bn An a n _1 + Bn Rn Tn

E[Y~ (y~)TJ = Qn+BnAnPn_lA~B~

+ Bn Rn Pn R~ B~ - Bn Xn A~ B~ - Bn An X~ B~

(15)

( 16)

Then one can write

(18)

Equation 18 has the form of a linear observation equation. All that is needed in

order to estimate Zn in a minimum variance fashion is to obtain an unbiased es­

timator of Yn whose covariance matrix is available. For I ~ K, Y~ (1) is a

scalar sample from a zero mean normal distribution whose variance is Yn (I).

Consequently (Y~ (I) 2/Yn (I) is the square of a scalar sample from a normal

distribution of mean 0 and variance L As such it is a sample from a chi-square

distribution with degree of freedom L The chi-square distribution with 1 degree

of freedom has mean 1 and variance 2. From these facts it follows that

(19)

and

(20)
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Equations 19 and 20 assert that (y~)2 is an unbiased estimator of Yn the

diagonal elements of whose covariance matrix are given by 2 Y~. The off diag-

onal elements are not readily obtainable and must be assumed zero. Another

difficulty is that Yn is dependent on Zn which is what we are attempting to esti-

mate. The covariance matrix of (y~)2 must be estimated by using the best esti-

- /\ -mate of Zn as obtained by equation 13. Given that an estimate Zn_1 of Zn_1 is

available our estimate of the covariance matrix of (y~)2 must be

E [(Y~)2 (y~)T2 ] ~ qn = 20-1 [(Bn Rn)2 b n 'Y~ 2n _1 + On] + wnJ (21)

The vector (y~)2 can now be treated as an observation and processed in a mini-

mum variance fashion to yield an estimate of Zn.

1\ _

Given an unbiased estimator Zn-1 of Zn_1 and its covariance matrix Pn-1 '

and Yn as defined by equation 15, the following recursion relations define the

minimum variance estimate of Zn .
/\
Z- =

n
T/\

'Y 'Y Zn_1 + on

yC =
n

y = (yR)2
n n

2 /\
[Bn Rn ] Z~ + wn

H - [RT BT ]2 -1n - 1<:1 n n 1<:2

1\ /\
Zn = Z~ + Hn [Yn - y~]

Pn = I<: 1 [1 - [R~ B~] 2 1<:;1 [B n Rn ] 2 I<:T]

10
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The filter is recursive in the sense that only the present residual must be

1\
available, the residual is not assumed to be scalar, Zn is an automatically at-

tenuating function of previous residuals and it is not necessary to assume the

state noise to be white. As promised, all objections to maximum likelihood

adaptive filtering are adequately met by the minimum variance adaptive filter.

It is instructive to see explicitly how the minimum variance adaptive feature

interfaces with the minimum variance filter presented by equations 7 through 12.

Given the mathematical model of equations 1 through 5 and given

1\

~-l' Pn-I ' Yn , Xn-l' Pn- 1 , Pn - 1 , Hn - 1 , An_I' Bn- 1 ,

the full set of recursion relations for the minimum variance adaptive filter is

1\
y R = Y _ B Y-

n n n"n

(23a)

(23b)

(23d)

(23e) .

Xn = 'Yn Xn- 1 (An _1 - Hn _1 Bn _1 An_1)T + 'Yn Pn -1 (Hn _1 Bn _1 An -1 - Rn_1)T (23c)

1\
Zn_l = D (Pn - I )

I\Z- T I\Z s:o
n = 1'1' n-I + un

(23f)

W n = D [Qn + Bn An Pn-l A~ B~ - Bn Xn A~ B~ - Bn An X~ B~] (23g)

1\
y~ = [Bn Rn ] 2 Z~ + W n (23h)

"I = 'Yn 'Y~ Pn - 1 'Yn 'Y~ + fJn (23i)

qn = 2D-1 [[Bn Rn ]2 ['Yn'Y~ 2n _1 +(\] +WnJ (23j)

"2 = qn + [Bn R n ]2 'Yn 'Y~ Pn - 1 'Yn 'Y~ [R~ B~]2 + [Bn Rn 12 fJn [R~ B~]2 (23k)

11



1\ 1\
Zn = Z~ + Hn [Yn - Y; 1

Pn = "1 [I-(R~ B~)2 ,,;1 [Bn Rn12 "rJ
1\

Pn = 0-1 (Zn)

(23m)

(23n)

(230)

(23p)

Hn = 01 B~ 0;1 (23r)

1\ 1\
~ = X;; + Hn Y~ (23s)

Pn = 01 [I-B~0;1 Bn o11 (23t)

The structure of this elaborate set of recursion relations may become

clearer if one views equation 23 as a pair of interlocking minimum variance

filters. The inner filter defined by equations d through 0 estimates state noise

covariance and the outer filter defined by equations a through c and p through t

estimates the state~. The outer filter passes the residual Y~ and Xn to the

inner filter which processes (y~)2 as an observation and estimates Pn • The

matrixPn is treated by the outer filter as the state noise covariance and an es­

1\
timate ~ of ~ is obtained.

One has several controls on the behavior of the inner filter. The diagonal

matrix l'n is chosen on the basis of the expected relationship between sampling

rate and periodicities in unmodeled forces. The vector on is then chosen by

specifying the expected average level of state noise for each unmodeled force.

If the average level of state noise variance for the i th unmodeled force is Xi'

12



then in order for the asymptotic value of the i th component of Zn as generated by

equation 13 to equal Xi' one must have

(24)

Equation 24 explicitly specifies the elements of Dn. The matrix en deter­

mines the responsiveness of the inner filter's estimate of state noise covariance

to the present residual. If the eigenvalues of en are large, two or three large

residuals in succession will drastically change the inner filter's estimate of

state noise covariance. This will cause the outer filter to be guided less by

modeling and more by incoming data. Consequently if modeling errors are ex­

pected to have a sudden onset a matrix en with large eigenvalues is desirable.

Otherwise such a matrix is undesirable since it forces the filter to interpret a

small number of residuals as indicating the presence of a modeling error which

may not exist.

SIMULATIONS

The non-linear nature of adaptive filters make performance evaluation by

means of ensemble studies impossible. If one is to know the capabilities of an

adaptive filter in a given situation, simulations must be performed. This simu­

lation will compare the performance of the minimum variance adaptive filter as

presented in previous sections with that of a standard minimum variance filter

with state noise covariance chosen a-priori. Both filters will employ simple

two-body theory on an earth orbit which initially is approximately circular with

13



a 8,000 km radius. In both filters, the Rn matrix of equation 1 was chosen under

the premi se that any unmodeled forces are pointing toward the earth's center.

This permits the state noise to be modeled as a scalar random variable, and

simplifies somewhat the recursion relations of equation 24. The observations

were generated under the assumption that in addition to a point mass earth an­

other point mass, a "mass concentration" of considerable size, was situated just

under the earth surface in such a way that its impact on satellite dynamics was

considerable. A random number generator was used to add the appropriate ran­

dom component to the true observations. The added point mass was made very

large so that substantial efforts could be seen in a short period of time. Each

filter's performance at any given time was measured by the distance between

the actual position of satellite and the estimated position. Both filters assume

initially that the standard deviation of the acceleration due to the unmodeled force

is 0.1 m/sec 2 • Table 1 provides complete orbital and tracking information for

the simulation. Since modeling errors were expected to be long relative to the

data sampling rate, 'Yn which in this case is a scalar was chosen to be 0.9. The

variance en of the state noise of the inner filter state equation was set at

10 -3 m 2/sec 4 • No systematic effort was made to choose these parameters so as

to optimize the adaptive filter's performance. It is likely that a more judicious

choice of 'Yn and en is possible. The results of the comparison are shown in

Figure 1. The initial transient errors of both filters are off scale and are not

shown. Figure 1 demonstrates that the standard minimum variance filter does

14



Table 1

Orbital and Tracking Information for Simulation of Figure 1

ORBITAL INFORMATION

State of Satellite in 8,000 km circular, equatorial, orbit,

at To longitude 45°

Size of Mass 0.5% of earth mass
Concentration

Location of Mass 100 km beneath earth surface, longitude 60° ,

Concentration latitude 5°

A-priori Estimate of
State Noise Standard 0.1 m/sec 2

Deviation .-

TRACKING INFORMATION

Longitude Latitude Data Type
Acquisition Standard Observation

Rate Deviation Period

Tracking
30° 15° Ranging 10/min 10m To to To

Station 1 + 400 sec

Tracking 60° 30° Ranging 10/min 10m To to To
Station 2 + 400 sec

Tracking 65° _25° Ranging 10/min 10m To to To
Station 3 + 400 sec

15
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not track well in the presence of an unmodeled mass concentration. As the satel­

lite recedes from the mass concentration its performance gradually improves.

The satellite is also receding from the tracking stations with a resultant loss of

observability. This accounts for the slow decay of the adaptive filter's perform­

ance after about 300 seconds of tracking time. After 400 seconds of tracking

time the adaptive filter's estimate of the state is substantially better than that

of the standard minimum variance filter. In the region where the unmodeled

force had its greatest effect, the inner filter of the adaptive filter was returning

estimates of the standard deviation of the state noise between 1 m/sec 2 and

4 m/sec2 • As the satellite receded from the source of the unmodeled force the

estimate of the standard deviation of the state noise stabilized at between 0.1 m/

sec2 and 0.5 m/sec2 • The state noise variance used by the standard minimum

variance filter was of course fixed at 0.1 m/sec 2. This was not adequate to

permit the filter to respond to large residuals caused by the unmodeled force.

Had a much larger value been chosen for the standard deviation of state noise,

the standard minimum variance filter would have tracked well in the presence

of the unmodeled force but it would have behaved erratically when no unmodeled

forces were present.

It was mentioned in the introduction that in 'all the simulations the Author

has perfor,med the nominal R. M. S. position errors as obtained from the propa­

gated covariance matrix of the adaptive filter have been statistically compatible

with the actual filter errors. Another simulation the details of which are

17



Table 2

Orbital and Tracking Information for Simulation of Figure 2

ORBITAL INFORMATION

state of Satellite in 10,000 km circular, equatorial, orbit,

at To longitude 45°

Size of Mass 0.5% of earth mass
Concentration

Location of Mass 100 km beneath earth surface, longitude 60° ,
Concentration latitude 5°

A-priori Estimate of
State Noise Standard 0.1 m/sec 2

Deviation

TRACKING INFORMAnON

Longitude Latitude Data Type
Acquisition Standard Observation

Rate Deviation Period

Tracking
30° 15° Ranging 7/min 10m

To to To
Station 1 + 600 sec

Tracking
60° 30° Ranging 7/min 10m To to To

Station 2 + 600 sec

Tracking
65° 5° Ranging 7/min 10m To to To

Station 3 + 600 sec

18



displayed in Table 2 was performed in order to give a demonstration of this fact.

Figure 2 compares the actual R. M. S. position errors of the adaptive filter with

its nominal R. M. S. position errors as obtained from its propagated covariance

matrix. Again initial values are off scale and are not shown. The two curves

cohere until poor observability causes difficulties after about 500 seconds of

tracking time. Assuming filter errors are normally distributed they should ex­

ceed their R. M. S. values in approximately one-third of the cases. By this cri­

teria the propagated covariance matrix of the adaptive filter at least in this sim­

ulation appears to be a slightly conservative estimate of the filter's actual

errors.

CONCLUSIONS

This paper has presented a new algorithm for adaptively estimating state

noise covariance within the context of a recursive minimum variance filter. The

procedure utilizes a minimum variance rather than a maximum likelihood cri­

teria. The state noise is modeled as the resultant of a stochastic linear difference

equation, an assumption considerably more general than the usual modeling of

state noise as a white random sequence. The algorithm is completely recursive

and the state noise covariance estimate is an attenuating function of previous

residuals.

The minimum variance adaptive filter has been shown in simulations to be

more effective in tracking a satellite in the presence of modeling errors than a
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conventional minimum variance filter with state noise fixed a-priori. It was also

shown that in contrast to the conventional minimum variance filter the propagated

covariance matrix of the minimum variance adaptive filter is an accurate indi­

cator of the actual performance of the filter.
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